993 resultados para Modified anomalous subdiffusion equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a modified anomalous subdiffusion equation with a nonlinear source term for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time derivative acting on the diffusion term. A new implicit difference method is constructed. The stability and convergence are discussed using a new energy method. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of theoretical analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the numerical modelling and simulation for anomalous subdiffusion equation (ASDE), which is a type of fractional partial differential equation( FPDE) and has been found with widely applications in modern engineering and sciences, are attracting more and more attentions. The current dominant numerical method for modelling ASDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of the non-linear ASDE. The discrete system of equations is obtained by using the meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formulations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the ASDE. Therefore, the meshless technique should have good potential in development of a robust simulation tool for problems in engineering and science which are governed by the various types of fractional differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to develop an implicit meshless collocation technique based on the moving least squares approximation for numerical simulation of the anomalous subdiffusion equation(ASDE). The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach related to the time discretization are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling of ASDEs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomalous dynamics in complex systems have gained much interest in recent years. In this paper, a two-dimensional anomalous subdiffusion equation (2D-ASDE) is considered. Two numerical methods for solving the 2D-ASDE are presented. Their stability, convergence and solvability are discussed. A new multivariate extrapolation is introduced to improve the accuracy. Finally, numerical examples are given to demonstrate the effectiveness of the schemes and confirm the theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article aims to fill in the gap of the second-order accurate schemes for the time-fractional subdiffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional subdiffusion equation with space discretized by finite element and time discretized by the fractional linear multistep methods. These two methods are unconditionally stable with maximum global convergence order of $O(\tau+h^{r+1})$ in the $L^2$ norm, where $\tau$ and $h$ are the step sizes in time and space, respectively, and $r$ is the degree of the piecewise polynomial space. The average convergence rates for the two methods in time are also investigated, which shows that the average convergence rates of the two methods are $O(\tau^{1.5}+h^{r+1})$. Furthermore, two improved algorithms are constrcted, they are also unconditionally stable and convergent of order $O(\tau^2+h^{r+1})$. Numerical examples are provided to verify the theoretical analysis. The comparisons between the present algorithms and the existing ones are included, which show that our numerical algorithms exhibit better performances than the known ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In literature the phenomenon of diffusion has been widely studied, however for nonextensive systems which are governed by a nonlinear stochastic dynamic, there are a few soluble models. The purpose of this study is to present the solution of the nonlinear Fokker-Planck equation for a model of potential with barrier considering a term of absorption. Systems of this nature can be observed in various chemical or biological processes and their solution enriches the studies of existing nonextensive systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of dissipative and coherent N-body systems, such as a Bose-Einstein condensate, which can be described by an extended Gross-Pitaevskii formalism, is investigated. In order to analyze chaotic and unstable regimes, two approaches are considered: a metric one, based on calculations of Lyapunov exponents, and an algorithmic one, based on the Lempel-Ziv criterion. The consistency of both approaches is established, with the Lempel-Ziv algorithmic found as an efficient complementary approach to the metric one for the fast characterization of dynamical behaviors obtained from finite sequences. © 2013 Elsevier B.V. All rights reserved.